An Improved Particle Swarm Optimization Algorithm Of Radial Basis Neural Network
نویسندگان
چکیده
منابع مشابه
An Improved Probability Particle Swarm Optimization Algorithm
This paper deals with the problem of unconstrained optimization. An improved probability particle swarm optimization algorithm is proposed. Firstly, two normal distributions are used to describe the distributions of particle positions, respectively. One is the normal distribution with the global best position as mean value and the difference between the current fitness and the global best fitne...
متن کاملHybrid Approach to Optimize the Centers of Radial Basis Function Neural Network Using Particle Swarm Optimization
Function approximation is an important type of supervised machine learning techniques, which aims to create a model for an unknown function to find a relationship between input and output data. The aim of the proposed approach is to develop and evaluate a function approximation models using Radial Basis Function Neural Networks (RBFN) and Particles Swarm Optimization (PSO) algorithm. We propose...
متن کاملRadial Basis Function Neural Network Trained by Adaptive Chaotic Particle Swarm Optimization to Control Nonlinear Systems
Chaotic particle swarm optimization (CPSO) is a newly developed optimization technique which combines the benefits of particle swarm optimization (PSO) and the chaotic optimization. This combination aims at avoiding the premature convergence of the PSO and the shortcomings of the chaotic optimization, in particular, the slow searching speed and the low accuracy when applied in optimizing a larg...
متن کاملData Pre-processing for a Neural Network Trained by an Improved Particle Swarm Optimization Algorithm
This paper proposes an improved version of particle swarm optimization (PSO) algorithm for the training of a neural network (NN). An architecture for the NN trained by PSO (standard PSO, improved PSO) is also introduced. This architecture has a data preprocessing mechanism which consists of a normalization module and a data-shuffling module. Experimental results showed that the NN trained by im...
متن کاملA Radial Basis Function Neural Network with Adaptive Structure via Particle Swarm Optimization
Radial Basis Function neural network (RBFNN) is a combination of learning vector quantizer LVQ-I and gradient descent. RBFNN is first proposed by (Broomhead & Lowe, 1988), and their interpolation and generalization properties are thoroughly investigated in (Lowe, 1989), (Freeman & Saad, 1995). Since the mid-1980s, RBFNN has been used to apply on many applications, such as pattern classification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Control and Automation
سال: 2016
ISSN: 2005-4297,2005-4297
DOI: 10.14257/ijca.2016.9.10.38